ayny

Nucleophilic Bromo- and Iododifluoromethylation of Aldehydes

Mikhail D. Kosobokov, Vitalij V. Levin, Marina I. Struchkova, and Alexander D. Dilman*

N. D. Zelinsky Institute of Organic Chemistry, 119991 Moscow, Leninsky prosp. 47, Russian Federation

S Supporting Information

[AB](#page-2-0)STRACT: [A method for](#page-2-0) bromo- and iododifluoromethylation of aldehydes using bromo- and iodo-substituted difluoromethyl silicon reagents ($Me₃SiCF₂X$) is described. The reaction is performed in the presence of a combination of tetrabutylammonium and lithium salts Bu_4NX/LiX (X = Br or I) in propionitrile. It is believed that, in this process, a short-lived halodifluoromethyl carbanion serves as nucleophile, which is reversibly generated from difluorocarbene and a halide anion.

Due to the importance of organofluorine compounds in the pharmaceutical and agrochemical industries, as well as in materials science $\frac{1}{n}$ circuificant progress has been achieved in the materials science, $¹$ significant progress has been achieved in the</sup> development of a methodology for their synthesis. Among diverse approach[es](#page-2-0) for the introduction of a fluorinated group into organic molecules, $2,3$ methods for nucleophilic fluoroalkylation have become most popular.³ While various organometallics can serve as [eq](#page-2-0)uivalents of fluorinated carbanions,⁴ fluorinated silanes have emerged as [t](#page-2-0)he most convenient and widely applicable reagents for nucleophilic fluoroalkylatio[n](#page-2-0) reactions.^{3a}

To exhibit nucleophilic reactivity, fluorinated silanes have to be activa[ted](#page-2-0) by a silaphilic Lewis base (e.g., fluoride anion) through the generation of a pentacoordinate intermediate, which reacts with a suitable electrophile (e.g., aldehyde) (Scheme 1). Reactions of the Ruppert−Prakash reagent (X = F)^{3a−e} and chloro-substituted analog (X = Cl),⁵ as well as many other functionalized silanes,⁶ follow this pathway. However, re[act](#page-2-0)i[o](#page-2-0)ns of a bromo-substituted silane $(X = Br)$ $(X = Br)$ with aldehydes mediated by a fluoride ion h[av](#page-3-0)e been unsuccessful, γ presumably owing to facile decomposition of a pentacoordinate inter-mediate to difluorocarbene.⁸ Indeed, silane Me₃[Si](#page-3-0)CF₂Br (1a)

can generate difluorocarbene even in the presence of weak Lewis bases such as chloride and bromide ions. $9,10$ In this work, we describe nucleophilic bromo- and iododifluoromethylation of aldehydes with corresponding silanes in [a pr](#page-3-0)ocess, which relies on reverse generation of carbanionic species from difluorocarbene 11 and the halide anion.

While (bromodifluoromethyl)trimethylsilane (1a) can be readily obtain[ed](#page-3-0) from the Ruppert-Prakash reagent,^{6h,9a} iodinated silane (1b) has not been known. We prepared silane 1b from silane 1a in 70% yield by the bromine/[zinc](#page-3-0) exchange^{10b} followed by iodination (Scheme 2). Similar to 1a, the reagent 1b is a distillable liquid, which can be convenie[ntly](#page-3-0) handled in air.

Scheme 2. Synthesis of Silane 1b

Benzaldehyde (2a) was selected as a model substrate, and its reaction with silane 1a was investigated (Table 1). The reactions were typically performed in refluxing propionitrile (aroun[d](#page-1-0) 100 $^{\circ}$ C), and reaction mixtures were analyzed by 19 F NMR spectroscopy. Employment of 3 equiv of 1a along with 5 mol % of tetrabutylammonium bromide for 2 h provided 12% of silylated product 3a (entry 1). Increasing the amount of bromide salt provided a notable improvement, and finally, using 1.1 equiv of Bu_4 NBr lead after desilylative workup to product 4a in 78% isolated yield (entry 3). Performing the reaction at a lower temperature (refluxing acetonitrile) or with a decreased amount of silane 1a gave inferior results (entries 4 and 5).

However, when we tested p-methoxybenzaldehyde $(2b)$ under these conditions, product 3b was formed in 31% yield, with the rest being the unreacted aldehyde (entry 6). Increasing

Received: June 10, 2014 Published: June 26, 2014

Table 1. Optimization of Bromodifluoromethylation of Aldehydes

 ${}^a\mathrm{D}$ etermined by ${}^{19}\mathrm{F}$ NMR using PhCF_3 as internal standard. ${}^b\mathrm{I}$ solated yield of product 4a. "Reaction performed in refluxing acetonitrile."
d'Isolated yield of product 4b. "Reaction performed in diglyme at 100 $^{\circ}C.$

the concentration of $Bu₄NBr$ up to 3 equiv had little effect (entry 7), while use of a huge excess of the silane seemed impractical (entry 8). We reasoned that the reaction rate can be increased by the addition of a metal salt capable of exerting Lewis acidic activation of the carbonyl group. Rewardingly, addition of 0.5 equiv of lithium bromide virtually doubled the product yield (cf. entries 6 and 9). Finally, increasing the reaction time to 5 h allowed isolation of alcohol 4b in 92% yield (entry 10). The use of lithium bromide without the tetrabutylammonium counterpart gave inferior results (entries 11 and 12).

Under the optimized conditions, a series of aldehydes were reacted with silane 1a (Table 2, entries 1−11). Aromatic aldehydes bearing donating and withdrawing substituents, heterocyclic aldehydes, unsaturated, and nonenolizable aliphatic aldehydes afforded products 4a−l in high yields. Electronwithdrawing nitro and ester groups accelerated the nucleophilic addition, and the reactions were complete within 2 h (entries 3 and 4). For sterically hindered aldehydes a longer reation time and 3 equiv of both ammonium and lithium salts were needed (entries 7 and 11). Fortunately, α -methylcinnamaldehyde gave addition product 4k in 89% yield, while 19 F NMR analysis or crude material indicated only small amounts (ca. 5%) of difluorocyclopropane byproducts. However, hydrocinnamaldehyde gave a complex mixture, presumably, owing to its propensity to aldolization. The reaction of acetophenone was also unsuccessful with the product being formed in less than 10% yield. The ester group is tolerated (for an aromatic substrate, see entry 4, whereas, in the reaction of an aliphatic ester, methyl 4-phenylbutanoate, no product was detected).

Table 2. Bromo- and Iododifluoromethylation of Aldehydes

	Me $_3$ Si \searrow .х	$Bu4NX$ (1.1 equiv) LiX (0.5 equiv)			OН х R	
R 2	$1(3$ equiv)		EtCN, Δ then KHF ₂ /TFA		F F 4	
no.	aldehyde	$\mathbf X$	time	$\overline{\mathbf{4}}$	yield of 4, % ^a	
$\,1$	Ph-	Br	5	4a	96	
$\overline{\mathbf{c}}$		$\rm Br$	5	4c	95	
3	O_2N	Br	$\boldsymbol{2}$	4d	96	
4	MeC	$\rm Br$	2	4e	90	
5	Ö	$\rm Br$	5	4f	95	
6		$\rm Br$	5	4g	91	
7^b		Br	10	4h	84	
8		Br	5	4i	91	
9		Br	5	4j	93	
10		Br	5	4k	89	
11^b		Br	10	41	77	
12		I	10	4m	92	
13	MeO	I	10	4n	75	
14	$\hat{\mathcal{S}}$	I	10	40	98	
15		$\mathbf I$	10	4p	78	
16		I	10	4q	97	
a Isolated yield. b3 equiv of each Bu ₄ NBr and LiBr were used.						

Reactions of aldehydes with iodo-substituted silane 1b were performed using the Bu4NI/LiI system under similar conditions. Typically, the reactions proceeded slower compared to those with silane 1a. Nevertheless, good yields of iododifluoroalkylation products were achieved after heating for 10 h (entries 12−16).

Concerning the reaction mechanism, two pathways can be considered (Scheme 3). In path (a), the halide anion reversibly generates a difluorocarbene through the intermediacy of halodifluoromethyl [ca](#page-2-0)rbanion 5. While the latter species is believed to be very short-lived, it can be trapped with the appropriate electrophile. A lithium salt can activate the carbonyl group though some association of the lithium cation with

Scheme 3. Reaction Mechanism

path (b)

carbanionic species 5 cannot be excluded. In an alternative mechanism, path (b), the halodifluoromethyl group can be transferred in a concerted fashion from a pentacoordinate siliconate intermediate.

To gain some mechanistic information, several experiments were carried out (Scheme 4). Thus, when the reaction of

Scheme 4. Mechanistic Studies

$$
Ph \n\begin{array}{ccc}\nO & \text{LiBr (3 equity)} \\
\downarrow & \text{Me}_3\text{SiCF}_3 \n\end{array}\n\qquad\n\begin{array}{ccc}\n\text{LiBr (3 equity)} & \text{OH} \\
\downarrow & \text{diglyme, 170 °C, 2 h} & \text{Pr} \n\end{array}\n\qquad\n\begin{array}{ccc}\n\text{OH} & \text{Br} \\
\downarrow & \text{Br} \\
\downarrow & \text{F} & \text{F}\n\end{array}\n\tag{2}
$$

$$
\begin{array}{ccc}\n\text{Me}_{3}\text{Si}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array}\n\end{array} & \text{Me}_{3}\text{Si}} \\
\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array}{c}\n\end{array} & \text{P}_{n}\n\end{array}\n\end{array}\n\end{array}\n\begin{array}{c}\n\begin{array
$$

aldehyde 2b was performed in the presence of 1,1-diphenylethylene employing a deficient amount of silane 1a, difluorocyclopropane 6 was formed preferentially (eq 1). This fact suggests the intermediacy of difluorocarbene^{11,12} which is generated faster than the aldehyde addition product is formed. Furthermore, use of the Ruppert−Prakash reag[ent a](#page-3-0)s a source of difluorocarbene¹³ afforded bromodifluoromethylated alcohol 4a as a sole product in 17% yield (eq 2). To probe the

reversible generation of difluorocarbene, iodo-substituted silane 1b was combined with tetrabutylammonium bromide in the presence of 1,1-diphenylethylene (eq 3). The halogen exchange proceeded rapidly even at room temperature, and in 7 min silane 1a and cyclopropane 6 were detected.¹⁴ Taken together, these observations support path (a), in which the nucleophilic species 5 is generated from the interaction [of](#page-3-0) difluorocarbene with a halide anion.

In summary, a convenient method for nucleophilic bromoand iododifluoromethylation of aldehydes by means of corresponding silicon reagents is described. The use of a stoichiometric amount of a halide anion is important to achieve good yields of products. The role of the halide is believed to trap difluorocarbene generating a transient halodifluoromethyl carbanion.

ASSOCIATED CONTENT

6 Supporting Information

Experimental procedures, compound characterization data, copies of NMR spectra for all compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

■ AUTHOR INFORMATION

Corresponding Author

*E-mail: adil25@mail.ru.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (Project 14-13-00034).

■ REFERENCES

(1) (a) Wang, J.; Sánchez-Roselló, M.; Aceña, J. L.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432−2506. (b) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881−1886. (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320−330. (d) Kirsch, P. Modern Fluoroorganic Chemistry; Wiley-VCH Verlag: Weinheim, 2004. (2) For recent reviews, see: (a) Liang, T.; Neumann, C. N.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214−8264. (b) Studer, A. Angew. Chem., Int. Ed. 2012, 51, 8950−8958. (c) Tomashenko, O. A.; Grushin, V. V. Chem. Rev. 2011, 111, 4475−4521. (d) Xu, J.; Liu, X.; Fu, Y. Tetrahedron Lett. 2014, 55, 585−594. (e) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470−477. (f) Shibata, N.; Matsnev, A.; Cahard, D. Beilstein J. Org. Chem. 2010, 6, 65. (g) Ma, J.-A.; Cahard, D. J. Fluorine Chem. 2007, 128, 975−996. (h) Roy, S.; Gregg, B. T.; Gribble, G. W.; Le, V.-D.; Roy, S. Tetrahedron 2011, 67, 2161−2195. (i) Ma, J.-A.; Cahard, D. Chem. Rev. 2008, 108, PR1−PR43.

(3) (a) Prakash, G. K. S.; Yudin, A. K. Chem. Rev. 1997, 97, 757−786. (b) Liu, X.; Xu, C.; Wang, M.; Liu, Q. Chem. Rev. 2014. ASAP, doi: 10.1021/cr400473a. (c) Chu, L.; Qing, F.-L. Acc. Chem. Res. 2014, 47, 1513−1522. (d) Dilman, A. D.; Levin, V. V. Eur. J. Org. Chem. 2011, 831−841. (e) Singh, R. P.; Shreeve, J. M. Tetrahedron 2000, 56, 7613− 7632. (f) Medebielle, M.; Dolbier, W. R., Jr J. Fluorine Chem. 2008, 129, 930−942. (g) Langlois, B. R.; Billard, T.; Roussel, S. J. Fluorine Chem. 2005, 126, 173−179.

(4) (a) Burton, D. J.; Yang, Z.-Y. Tetrahedron 1992, 48, 189−275. (b) Burton, D.; Lu, L. Top. Curr. Chem. 1997, 193, 45−89.

(6) (a) Uneyama, K. J. Fluorine Chem. 2008, 129, 550−576. (b) Prakash, G. K. S.; Hu, J. Acc. Chem. Res. 2007, 40, 921−930. (c) Ni, C.; Hu, J. Tetrahedron Lett. 2005, 46, 8273−8277. (d) Prakash, G. K. S.; Hu, J.; Wang, Y.; Olah, G. A. J. Fluorine Chem. 2005, 126, 529−534. (e) Alexandrova, A. V.; Beier, P. J. Fluorine Chem. 2009, 130, 493−500. (f) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett. 2011, 13, 5560−5563. (g) Kosobokov, M. D.; Dilman, A. D.; Struchkova, M. I.; Belyakov, P. A.; Hu, J. J. Org. Chem. 2012, 77, 2080−2086. (h) Kosobokov, M. D.; Dilman, A. D.; Levin, V. V.; Struchkova, M. I. J. Org. Chem. 2012, 77, 5850−5855.

(7) (a) Zhao, Y.; Gao, B.; Hu, J. J. Am. Chem. Soc. 2012, 134, 5790− 5793. (b) Hagiwara, T.; Fuchikami, T. Synlett 1995, 717−718. (c) One example of successful bromodifluoromethylation was reported, though for an unconventional carbonyl substrate, a cyclic 1,2-diamide derivative; see: Broicher, V.; Geffken, D. Arch. Pharm. 1990, 323, 929−931.

(8) (a) For challenges associated with CF_2Br^- and CF_2I^- carbanions and a by-pass approach for halodifluoromethylation, see ref 7a. (b) For a seminal study on CF₂X[−] carbanions, see: Wheaton, G. A.; Burton, D. J. J. Org. Chem. 1978, 43, 2643−2651.

(9) (a) Li, L.; Wang, F.; Ni, C.; Hu, J. Angew. Chem., Int. Ed. 2013, 52, 12390−12394. (b) Wang, F.; Zhang, W.; Zhu, J.; Li, H.; Huang, K.- W.; Hu, J. Chem. Commun. 2011, 47, 2411−2413.

(10) For results from our group on application of silane 1a, see: (a) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. Org. Lett. 2013, 15, 917−919. (b) Kosobokov, M. D.; Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Korlyukov, A. A.; Arkhipov, D. E.; Dilman, A. D. Org. Lett. 2014, 16, 1438−1441. (b) Zemtsov, A. A.; Kondratyev, N. S.; Levin, V. V.; Struchkova, M. I.; Dilman, A. D. J. Org. Chem. 2014, 79, 818−822.

(11) For reviews on difluorocarbene, see: (a) Ni, C.; Hu, J. Synthesis 2014, 46, 842–863. (b) Brahms, D. L. S.; Dailey, W. P. Chem. Rev. 1996, 96, 1585−1632.

(12) Dolbier, W. R.; Battiste, M. A. Chem. Rev. 2003, 103, 1071− 1098.

(13) (a) Prakash, G. K. S.; Krishnamoorthy, S.; Ganesh, S. K.; Kulkarni, A.; Haiges, R.; Olah, G. A. Org. Lett. 2014, 16, 54−57. (b) Wang, F.; Luo, T.; Hu, J.; Wang, Y.; Krishnan, H. S.; Jog, P. V.; Ganesh, S. K.; Prakash, G. K. S.; Olah, G. A. Angew. Chem., Int. Ed. 2011, 50, 7153−7157.

(14) Similar Br/Cl exchange in the reaction of $Me₃SiCF₂Br$ with the chloride ion was reported; see: Wang, F.; Li, L.; Ni, C.; Hu, J. Beilstein J. Org. Chem. 2014, 10, 344−351.